j'ai compris mes maths
J'ai compris.com
Cours et exercices corrigés en vidéo comme en classe
lycée
collège
primaire
Manuel scolaire

Web


Ce sera prêt pour 2018

Ce sera prêt pour 2017

Première S

Calcul de dérivée
(En cours de réalisation)

Formules de dérivation
  • Conseils pour ce chapitre:
    • Regarder le cours précédent sur la définition de la dérivée
  • Comment travailler efficacement Cours de math en vidéo
  • Conseils pour le jour du bac Cours de math en vidéo

  • Dérivée sur un intervalle
    Dire qu'une fonction est dérivable sur un intervalle I
    signifie
    que cette fonction est dérivable pour tout $x$ de I
    Autrement dit que
    $f'(x)$ existe pour tout $x$ de I

    Les théorèmes ci-dessous, permettent de justifier
    qu'une fonction est dérivable sur un intervalle
    et
    donnent la dérivée.

Dérivée

de fonction du type $\boldsymbol{k}$, $\boldsymbol{x}$, $\boldsymbol{x^2}$, $\boldsymbol{x^n}$: cours en vidéo Cours de math en vidéo
  • Dérivée d'une constante  
    Si $f$ est définie sur $\mathbb{R}$ par $\boldsymbol{f(x)=k}$
    $k$ est une constante réelle

    alors $f$ est dérivable sur $\boldsymbol{\mathbb{R}}$ et pour tout $x$ réel, $\boldsymbol{f'(x)=0}$
    Exemple:
    Si $f(x)=3$ alors $f'(x)=0$

  • Dérivée de $\boldsymbol{x}$  
    Si $f$ est définie sur $\mathbb{R}$ par $\boldsymbol{f(x)=x}$
    alors $f$ est dérivable sur $\boldsymbol{\mathbb{R}}$ et pour tout $x$ réel, $\boldsymbol{f'(x)=1}$
  • Dérivée de $\boldsymbol{x^2}$
    Si $f$ est définie sur $\mathbb{R}$ par $\boldsymbol{f(x)=x^2}$
    alors $f$ est dérivable sur $\boldsymbol{\mathbb{R}}$ et pour tout $x$ réel, $\boldsymbol{f'(x)=2x}$
  • Dérivée de $\boldsymbol{x^n}$
    Si $f$ est définie sur $\mathbb{R}$ par $\boldsymbol{f(x)=x^n}$
    $\boldsymbol{n}$ est un entier supérieur ou égal à 2!

    alors $f$ est dérivable sur $\mathbb{R}$ et pour tout $x$ réel, $\boldsymbol{f'(x)=nx^{n-1}}$
    Exemple:
    Soit $f$ définie sur $\mathbb{R}$ par \[ f(x)=x^5\]
    $f$ est dérivable sur $\mathbb{R}$
    car elle est de la forme $x^n$
    avec $n$ entier strictement positif

    Et pour tout $x$ réel, $f(x)=5x^4$
    On applique la formule avec $n=5$.

Dérivée

de fonction du type $\displaystyle \boldsymbol{\frac 1x}$, $\displaystyle\boldsymbol{\frac 1{x^n}}$: cours en vidéo Cours de math en vidéo
  • Dérivée de \[\boldsymbol{\frac 1x}\]
    Si $f$ est définie sur $]-\infty;0[\cup]0;+\infty[$ par \[ \boldsymbol{f(x)=\frac 1x}\]
    alors $f$ est dérivable sur $]-\infty;0[\cup]0;+\infty[$ et pour tout $x$ non nul, \[ \boldsymbol{f'(x)=-\frac 1{x^2}}\]
  • Dérivée de \[\boldsymbol{\frac1{x^n}}\]
    Si $f$ est définie sur $]-\infty;0[\cup]0;+\infty[$ par \[\boldsymbol{f(x)=\frac 1{x^n}} \]
    $n$ est un entier strictement positif

    alors $f$ est dérivable sur $]-\infty;0[\cup]0;+\infty[$
    et pour dériver, on écrit \[\frac 1{x^n}=x^{-n} \]
    Puis on applique la formule $f(x)=x^n$ alors $f'(x)=nx^{n-1}$
    formule encore valable
    avec $n$ entier strictement négatif.


    Exemple:
    Pour calculer la dérivée de \[ f(x)=\frac 1{x^3}\], on écrit:
    Pour tout $x$ non nul:
    1) \[f(x)=\frac 1{x^3}=x^{-3} \]
    On utilise \[ \frac 1{x^n}=x^{-n}\]

    2) $f'(x)=-3x^{-3-1}=-3x^{-4}$
    Attention,
    on voit souvent l'erreur
    $f'(x)=-3x^{-2}$
    L'erreur c'est d'avoir
    rajouter 1 au lieu d'enlever 1.

    3) \[ f'(x)=-\frac 3{x^4}\]
    On se débarrasse des puissances négatives
    On utilise \[ x^{-n}=\frac 1{x^n}\]

Dérivée

d'une somme
: cours en vidéo Un peu de patience, la vidéo est bientôt prête
  • Dérivée de $\boldsymbol{u+v}$
    Dérivée d'une somme
    Pour la dérivée d'une soustraction
    c'est la même méthode,
    le + est transformé en -

    Si $\boldsymbol u$ et $\boldsymbol v$ sont deux fonctions dérivables sur un même intervalle I,
    alors $\boldsymbol{u+v}$ est aussi dérivable sur I
    et on a $\boldsymbol{(u+v)'=u'+v'}$
    Autrement dit:
    Quand on veut dériver une somme de fonctions
    on les dérive séparement et puis on additionne les dérivées.

    Exemple:
    Pour dériver $f(x)=x+x^2$
    On écrit:
    $f$ est la somme de 2 fonctions dérivables sur $\mathbb{R}$
    Donc $f$ est dérivable sur $\mathbb{R}$
    Et pour tout $x$ réel, $f'(x)=1+2x$

Dérivée

d'un produit
: cours en vidéo Cours de math en vidéo
  • Dérivée de $\boldsymbol{kv}$
    Si $\boldsymbol{u}$ est une fonction dérivable sur un intervalle I
    alors $\boldsymbol{ku}$ est aussi dérivable sur I
    $k$ est une constante réelle

    et on a $\boldsymbol{(ku)'=k\times u'}$
    Attention
    on ne dérive pas le $k$!

    Pour dériver $f(x)=3x^2$
    $f'(x)=3\times 2x$

  • Dérivée de $\boldsymbol{u\times v}$
    Si $\boldsymbol{u}$ et $\boldsymbol{v}$ sont 2 fonctions dérivables sur un même intervalle I
    alors $\boldsymbol{uv}$ est aussi dérivable sur I
    et on a
    $\boldsymbol{(u \times v)'=u'v+uv'}$
    Exemple:
    $f(x)=x\sqrt{x}$
    on écrit $u(x)=x$ et $v(x)=\sqrt{x}$
    $u$ et $v$ sont dérivables sur $]0;+\infty[$ donc $f$ aussi.
    et on a $u'(x)=1$ et \[v'(x)=\frac 1{2\sqrt x} \]
    Donc \[f'(x)=1\times \sqrt{x}+x\times \frac 1{2\sqrt x} \].

  • Ne pas confondre $k+u$ et $k\times u$
    $(k+u)'=0+u'=u'$
    où $k$ est une constante

    $(ku)'=k\times u'$
    Quand la constante $k$ est dans une multiplication,
    on ne dérive pas le $\boldsymbol k$!

    Exemple:
    Soit $f$ et $g$ définies sur $\mathbb{R}$ par $f(x)=4+x^2$ et $g(x)=4x^2$
    $f'(x)=0+2x=2x$
    $g'(x)=4\times 2x=8x$
    Surtout ne pas écrire:
    $g'(x)=0\times 2x$
    mais
    $g'(x)=4\times 2x$

Dérivée

d'un quotient
: cours en vidéo Cours de math en vidéo
  • Dérivée de \[\boldsymbol{\frac 1u}\]
    Si $\boldsymbol{u}$ est une fonction dérivable sur un intervalle I
    qui ne s'annule pas sur cet intervalle
    alors \[\boldsymbol{\frac 1u}\] est aussi dérivable sur I
    et on a
    \[\boldsymbol{\left(\frac 1u\right)'=-\frac{u'}{u^2}}\]
    Exemple:
    \[f(x)=\frac1{x^2+1} \]
    On écrit $u(x)=x^2+1$
    $u$ ne s'annule pas sur $\mathbb{R}$ et $u$ est dérivable sur $\mathbb{R}$
    donc \[\frac 1u \], c'est à dire $f$ est dérivable sur $\mathbb{R}$
    On a $u'(x)=2x$ donc \[ f'(x)=-\frac{2x}{(x^2+1)^2}\]

  • Dérivée de \[\boldsymbol{\frac uv}\]
    Si $\boldsymbol{u}$ et $\boldsymbol{v}$ sont 2 fonctions dérivables sur un même intervalle I
    et si $\boldsymbol{v}$ ne s'annule pas sur cet intervalle
    alors \[\boldsymbol{\frac uv}\] est aussi dérivable sur I
    et on a
    \[\boldsymbol{\left(\frac uv\right)'=\frac{u'v-uv'}{v^2}}\]
    Exemple:
    \[ f(x)=\frac{x^2}{x-1}\] sur $]1;+\infty[$
    On écrit $u(x)=x^2$ et $v(x)=x-1$
    $u$ et $v$ sont dérivables sur $\mathbb{R}$ donc sur $]1;+\infty[$
    $v$ ne s'annule pas sur $]1;+\infty[$
    donc \[ \frac uv\], c'est à dire $f$ est dérivable sur $]1;+\infty[$
    Pour tout $x\in ]1;+\infty[$, on a $u'(x)=2x$ et $v'(x)=1$
    donc \[ f'(x)=\frac{2x\times (x-1)-x^2\times 1}{(x-1)^2}\]
    Puis on arrange et on obtient:
    \[ f'(x)=\frac{x^2-2x}{(x-1)^2}\]

    Surtout ne pas développer le dénominateur,
    car on voit que c'est un carré donc positif.
    Et c'est très pratique de connaitre le signe
    quand on a dérivé!


  • Constante au numérateur
    Quand on a \[ \frac ku\]
    où $k$ est une constante

    on l'écrit: \[\boldsymbol{ \frac ku=k\times \frac 1u}\]
    c'est plus pratique pour dériver
    ça évite d'utiliser la formule de $\displaystyle \boldsymbol{\frac uv}$

    Exemple:
    Soit $f$ définie sur $]0;+\infty[$ par \[ f(x)=\frac 3x\]
    on écrit \[ f(x)=3\times \frac 1x\]
    donc \[ f'(x)=3\times \frac{-1}{x^2}\]

  • Constante au dénominateur
    Quand on a \[ \frac uk\]
    où $k$ est une constante

    On l'écrit: \[\boldsymbol{\frac uk=\frac 1k\times u}\]
    C'est plus pratique pour dériver
    ça évite d'utiliser la formule de $\displaystyle \boldsymbol{\frac uv}$

    Exemple:
    Soit $f$ définie sur $\mathbb{R}$ par \[ f(x)=\frac {x^2}4\]
    on écrit \[f(x)=\frac 14\times x^2 \]
    donc \[ f'(x)=\frac 14 \times 2x\]

  • Comment faire en exercice
    1) Décomposer la fonction
    On décompose la fonction de façon à faire apparaitre:
    \[ x^n\], \[\frac 1{x^n} \], \[u+v \], \[ku \], \[ uv\], \[ \frac 1u\], \[\frac uv \]

    2) Justifier la dérivabilité
    On justifie que la fonction est dérivable sur l'intervalle indiqué
    à l'aide des théorèmes ci-dessus.

    3) On calcule la dérivée
    Exemple:
    Soit $f$ définie sur $]0;+\infty[$ par \[f(x)=3x^2+\frac 5x \]
    1) \[ f(x)=3\times x^2+5\times \frac 1x\]
    $f(x)$ est de la forme:
    $f=k_1 \times u + k_2\times v$
    où $u(x)=x^2$ et \[ v(x)=\frac 1x\]
    $u$ est dérivable sur $\mathbb{R}$ donc sur $]0;+\infty[$
    $v$ est dérivable sur $]0;+\infty[$



    2) $f$ est la somme et produit de fonctions dérivables sur $]0;+\infty[$ donc $f$ est dérivable sur $]0;+\infty[$
    3) $f=k_1 \times u + k_2\times v$
    où $u(x)=x^2$ et \[v(x)=\frac 1x \]

    Donc $f'=k_1\times u'+k_2\times v'$
    comme $u(x)=x^2$, $u'(x)=2x$
    et \[ v(x)=\frac 1x\], \[ v'(x)=-\frac 1{x^2}\]

    Donc \[f'(x)=3\times 2x+5\times (-\frac 1{x^2}) \]
    Puis on arrange et on obtient:
    \[ f(x)=6x-\frac 5{x^2}\]

  • Une erreur classique
    Erreur classique concernant $\displaystyle \boldsymbol{uv}$ et $\displaystyle \boldsymbol{\frac uv}$

    Les théorèmes qui permettent de conclure que $\displaystyle \boldsymbol{uv}$ et $\displaystyle \boldsymbol{\frac uv}$ sont dérivables
    reposent sur le fait que $u$ et $v$ sont toutes les 2 dérivables sur un intervalle I.
    Mais si $\boldsymbol{u}$ ou $\boldsymbol{v}$ ou les deux ne sont pas dérivables sur I, on ne peut rien conclure.
    Surtout ne pas croire
    par exemple
    que si l'une est dérivable sur I et l'autre pas
    alors $\boldsymbol{uv}$ n'est pas dérivable sur I!
    Dès que l'une des deux n'est pas dérivable en $a$
    pour savoir si $uv$ est dérivable ou pas en $a$
    on utilise la définition
    On cherche
    la limite de \[\frac{f(a+h)-f(a)}h\] quand $h$ tend vers 0.
    Si cette limite est finie, la fonction est dérivable en $a$,
    Si la limite n'existe pas ou est infinie, la fonction n'est pas dérivable en $a$.




Corrigé en vidéo! Exercices 1: Ecrire la propriété P(n) au rang n+1
Indication:
• Commence par écrire P(n+1) au brouillon
• Dans l'hérédité, pense à factoriser
Dans chaque cas, dire s'il s'agit d'une fonction polynôme du second degré.
Dans l'affirmative, donner les coefficients $a$, $b$, $c$.
a) $-2x^2+5$        b) $(1-2x)^2$        c) $\frac{x^2+x-1}4$        d) $(3x-2)^2-9x^2$        e) $(1-3x)(2x-5)$
Corrigé en vidéo! Exercices 2: Somme de 1+2+...n et raisonnement par récurrence - Somme des n premiers entiers
Indication:
• Commence par écrire P(n+1) au brouillon
• Dans l'hérédité, pense à factoriser
résoudre une inéquation produit
Corrigé en vidéo! Exercices 3: Somme des carrés 1²+2²+3²+...+n² et récurrence
Indication:
• Commence par écrire P(n+1) au brouillon
• Dans l'hérédité, pense à factoriser
résoudre une inéquation en factorisant avec le facteur commun
Corrigé!
Exercices 4: Somme des cubes 1³+2³+...+n³ et récurrence

résoudre une inéquation du 1er degré
Corrigé en vidéo! Exercices 5: Démontrer par récurrence que 0 ≤un≤ 2 où un+1=√(un+1)
Indication: dans l'hérédité:
Pour passer de un à un+1
il faut rajouter 1 puis prendre la racine
résoudre une inéquation produit
Corrigé en vidéo! Exercices 6: récurrence et sens de variation
Indication: dans l'hérédité, utilise les variations de f:
Soit a, b appartenant à un intervalle I
Si f est croissante sur I et a ≤ b
alors f(a) ≤ f(b)
Autrement dit f conserve l'ordre sur I
résoudre une inéquation en factorisant avec le facteur commun
Corrigé en vidéo! Exercices 7: Démontrer par récurrence qu'une suite est croissante - D'après question de Bac
résoudre une inéquation en factorisant
Exercices 8: Démontrer par récurrence qu'une suite est croissante ou décroissante - sujet bac Pondichéry 2015 partie B
résoudre une inéquation avec des fractions
Corrigé en vidéo! Exercices 9: Démontrer par récurrence que ..≤un≤... où un+1=f(un)
Utilise la même méthode que pour l'exercice 6
résoudre une inéquation avec des fractions
Corrigé en vidéo! Exercices 10: Démontrer par récurrence que ..≤un≤... où un+1=f(un)
Utilise la même méthode que pour l'exercice 6 et 7
Pas besoin de faire une récurrence, utilise la méthode classique:
• Calcule un+1-un
• puis trouve le signe de un+1-un
résoudre une inéquation du 2nd degré
Exercices 11: Démontrer par récurrence que ... est divisible - multiple
résoudre une inéquation du 2nd degré
Corrigé en vidéo!
Exercices 12: Démontrer par récurrence que ... est divisible - multiple - Les erreurs à éviter
résoudre une inéquation du 2nd degré
Exercices 13: Démontrer par récurrence que ... est divisible - multiple
résoudre une inéquation du 2nd degré
Exercices 14: Démontrer par récurrence que ... est divisible - multiple
résoudre une inéquation du 2nd degré
Corrigé en vidéo! Exercices 15: Démontrer que (un)'=nu'un-1 - dérivée de u^n, x^n
Rappel: si \(u\) et \(v\) sont deux fonctions dérivables sur un intervalle I alors \[\left\{\begin{array}{l} u\times v \text{ est dérivable sur I}\\ \quad\quad \text{ et}\\ (u\times v)'=u'v+uv'\\ \end{array}\right.\]
Soit \(f\) une fonction dérivable sur un intervalle I.
1) Démontrer par récurrence que pour tout entier \(n\ge 1\), \(f^n\) est dérivable sur I et que \((f^n)'=n f' f^{n-1}\).
2) Appliquer ce résultat à la fonction \(f\) définie sur \(\mathbb{R}\) par \(f(x)=x^n\) où \(n\) est un entier naturel non nul.
Exercices 16: Démontrer par récurrence une inégalité ...≥ ... -
Démontrer que pour tout entier \(n\ge 2\), \(5^n\ge 4^n+3^n\).
Exercices 17: Démontrer par récurrence une inégalité ...≥ ...
Démontrer que pour tout entier \(n\ge 4\), \(2^n\ge n^2\).
Corrigé en vidéo! Exercices 18: Démontrer par récurrence une inégalité Bernoulli
Dans l'hérédité, penser que:
A+B ≥ A lorsque B est positif
\(x\) est un réel positif.
Démontrer que pour tout entier naturel \(n\), \((1+x)^n\ge 1+nx\).
Exercices 19: Démontrer par récurrence - nombre de segments avec n points sur un cercle
On place \(n\) points distincts sur un cercle, et \(n\ge 2\).
Démontrer que le nombre de segments que l'on peut tracer avec ces \(n\) points est \(\frac{n(n-1)}2\).
Exercices 20: Démontrer par récurrence - somme des angles dans un polygone
Démontrer par récurrence que la somme des angles dans un polygone non croisé vaut $(n-2)\pi$ radian.
Exercices 21: Démontrer par récurrence une inégalité ...≥ ...
On considère la suite \((u_n)\) définie par \(u_0=2\) et pour tout entier naturel \(n\), \(u_{n+1}=u_n+2n+5\).
Démontrer que pour tout entier naturel \(n\), \(u_n>n^2\).
Corrigé en vidéo! Exercices 22: Démontrer par récurrence une inégalité suite de Héron
Indication:
Soit a, b, c, d appartenant à un intervalle I
Si f est croissante sur I et a ≤ b ≤ c ≤ d
alors f(a) ≤ f(b) ≤ f(c) ≤ f(d)
Autrement dit f conserve l'ordre sur I
On considère la fonction définie sur \(]0;+\infty[\), par \(f(x)=\frac x 2 +\frac 1 x\).
  • Étudier les variations de \(f\).
  • On considère la suite définie par \(u_0=5\) et pour tout entier naturel \(n\), \(u_{n+1}=f(u_n)\).
    a) Démontrer par récurrence que pour tout entier naturel \(n\), \(\sqrt 2\le u_{n+1} \le u_n \le 5\).
    b) Que peut-on conclure?
Exercices 23: Conjecturer puis démontrer par récurrence l'expression de un en fonction de n - formule explicite
Soit la suite \((u_n)\) définie par \(u_0=1\) et pour tout entier naturel \(n\), \(u_{n+1}=\sqrt{2+{u_n}^2}\).
1) Calculer les quatre premiers termes de la suite.
2) Conjecturer l'expression de \(u_n\) en fonction de \(n\).
3) Démontrer cette conjecture.
Corrigé en vidéo! Exercices 24: Démontrer par récurrence un=... - formule explicite
On considère la suite \((u_n)\) définie par \(u_0=1\) et pour tout entier naturel \(n\), \(u_{n+1}=\frac 12 u_n+3\).
Démontrer que pour tout entier naturel \(n\), \(u_n=\frac {-5}{2^n}+6\).
Corrigé en vidéo! Exercices 25: Ecrire un Algorithme pour calculer la somme d'une suite
Soit la suite $u$ définie par $u_0=1$ et pour tout entier naturel $n$, $u_{n+1}=2u_n+1+n$.
Écrire un algorithme pour calculer la somme $S_n=u_0+u_1+...+u_n$ en utilisant la boucle "Tant que ...".

Raisonnement par récurrence : Exercices

à Imprimer


Ce site vous a été utile? Ce site vous a été utile
alors dites-le !


Merci à vous.
Contact

N'hesitez pas à envoyer un mail à:
jaicompris.com@gmail.com

Liens
Qui sommes-nous? Nicolas Halpern-Herla
Agrégé de Mathématiques
Professeur en S, ES et STI depuis 22 ans
Créateur de jeux de stratégie: Agora et Chifoumi

Stephane Chenevière
Agrégé de Mathématiques
Professeur en S, ES depuis 13 ans
Champion de France de magie en 2001: Magie